
Copyright © SUSE 2022

Realtime Linux

1 5 O C TO B E R 2 0 2 2

Bogdan Lezhepekov <bogdan.lezhepekov@suse.com>

Radoslav Kolev <radoslav.kolev@suse.com>

OpenFest 2022

Sofia, Bulgaria

mailto:bogdan.lezhepekov@suse.com

SUSE – COMPANY SNAPSHOT

SUSE solutions are powering thousands of enterprise customers’ mission-
critical workloads, including electronic banking systems and enterprise
applications, autonomous vehicles, satellite operation centers, and life-
saving medical devices.

PARTNERSHIPSFAST FACTS

INDUSTRY INITIATIVES &
ASSOCIATIONS

• 13 out of 15 largest FinServ firms
• 14 out of 15 largest aerospace firms
• 10 out of 10 largest automotive firms
• 13 out of 15 largest pharma firms
• 5 out of 5 largest technology firms

• 19% YoY growth for SUSE
• 88% YoY growth for SUSE Rancher
• 50% ACV growth in cloud
• Member of CNCF board and TOC
• An independent leader in open source –

SUSE SA (FRA)

Acquired Rancher in 2020

CC-BY SUSE 2022

The CORRECT way
to use an escalator

🯉

🯅

🯈 🯅

🯉

🯈 🯉

🯅

🯉 🯅

🯅 🯅

🯅 🯉

🯉 🯅

🯉 🯉

🯅 🯅

A B

CC BY Thomas8047@Flickr

CC-BY SUSE 2022

Optimizing for throughput or latency

Throughput - the tasks performed by a computer over a

period of time

Latency - the delay between cause and effect, reaction time

5

A real-time system is actually slower (lower

throughput) than a non-RT one!

 Context switching takes time

 Bigger chance of CPU cache misses

 Real-time systems require some ‘slack’

 But it puts an upper bound on latency and minimizes

jitter.

CC-BY SUSE 2022

Real-time operating systems

A system is said to be real-time if the total correctness of an operation depends not only
upon its logical correctness, but also upon the time in which it is performed – Wikipedia

Linux Linux + PREMPT_RT

CC-BY SUSE 2022

Real-time systems – soft & hard

Hard real-time systems:

missing a deadline is a total
system failure

 Car ECUs, pacemakers, industrial robot
control, avionics

 Examples: no OS (bare metal), QNX,
classic AUTOSAR, FreeRTOS, Integrity,
Zephyr, etc.

Soft real-time systems:

missing a deadline degrades the
quality of service, but doesn’t lead to
critical failure

 Audio/video transmission, computer games
 Examples: RT Linux, Windows 10 IoT, etc.

7

Linux OS Basic
Concepts

10

CC-BY SUSE 2022

Kernel vs Userspace

Kernel
 CPU is in priviledged mode.
 Provides abstraction for security,

hardware, and internal data structures.
 A kernel process has direct and

unrestricted access to system
resources.

 All processes share a single virtual
address space.

 A kernel process can access any
memory block.

Userspace
 CPU is in unpriviledged mode.
 Userspace processes communicate

with the Kernel via API called system
call.

 All processes get separate virtual
address space.

 A user process can access memory
allocated to it, otherwise sigmentation
fault.

Userspace isolates ‘user’ processes from the core sub-systems of the operating system.

11

CC-BY SUSE 2022

An interrupt is a sort of signal that the hardware can send when it
requires CPU time. Linux has to deal with two types of interrupts:
hardware interrupts and software interrupts.

— Normally, handled in two parts: top half and bottom half.

— Top half executes critical code as soon as the hardware interrupt
is received.

— Bottom half is scheduled by software interrupt and does the most
expensive calculations.

12

Interrupts

CC-BY SUSE 2022

Preemption is a property of a multi-tasking operating system, in which
the CPU can be interrupted in the middle of executing code and
assigned other tasks. It is a way of implementing multitasking.

— The decision to preempt a task is taken by the scheduler.

— Critical for an RTOS to be able to ensure a higher priority task
overtakes a lower priority task.

— For RTOS any task should be preemptible, both in userspace and
kernel.

13

The concept of preemption

CC-BY SUSE 2022

The Linux kernel implements several preemption models. The desired model is selected at build time of the

kernel.

 No Forced Preemption (CONFIG_PREEMPT_NONE) (server): The traditional Linux preemption model, geared

towards throughput. System call returns and interrupts are the only preemption points in the kernel.

 Voluntary Kernel Preemption (CONFIG_PREEMPT_VOLUNTARY) (Desktop): This option reduces the latency of

the kernel by adding more “explicit preemption points” to the kernel code [. . .] at the cost of slightly lower

throughput. In addition to explicit preemption points, system call returns and interrupt returns are implicit

preemption points.

14

Preemption models in non-RT Linux

CC-BY SUSE 2022

Kernel Locks

Spinning Lock
 Spinlocks will busy-wait until the lock is freed.
 Spinlocks will disable preemption when taken.
 The spinlocks are most easily added to places that are

completely independent of other code (for example,
internal driver data structures that nobody else ever
touches).

 Types of spinning locks:
 spinlock_t
 rwlock_t
 raw_spinlock_t

Sleeping Locks
 Sleeping locks will sleep and schedule while

waiting.
 Types of sleeping locks :

 Mutex
 rt_mutex
 Semaphore
 rw_semaphore

Locks are synchronisation primitives that arbitrate concurrent accesses to a resource.

15

PREEMPT_RT patchset

16

CC-BY SUSE 2022

But why?

 First made available for Linux v2.6.11

 Slowly being merged into mainline

 One major hurdle remains - printk

17

The PREEMPT_RT patchset

graphic by Bootlin

CC-BY SUSE 2022

● Fully Preemptible Kernel (CONFIG_PREEMPT_RT) (RT): All kernel code is preemptible except for a few selected

critical sections. Additionally, large preemption disabled sections are substituted by separate locking

constructs. This preemption model has to be selected in order to obtain real-time behavior.

● With PREEMPT_RT, spinlock_t and rwlock_t will become sleeping locks

● Almost all interrupt handlers are threaded

18

What does PREEMPT_RT bring to the Linux kernel?

Configuring the
realtime system

19

Copyright © SUSE 2022

Linux provides means to ‘pin’ a given process to CPU – the CPU affinity mechanism. You can also set
constraints on CPU cores that allow you to allocate cores for your tasks.

Practical tips:

 Make sure that a process won’t be migrated to another core.

 Dedicate cores for specific tasks.

 Optimize the data-path if a process deals with data handled by a specific CPU core.

 Ease the job of the scheduler’s CPU load-balancer, whose complexity grows non-linearly with the number of CPUs.

 Kernel can also schedule other processes on the CPU cores you have chosen, therefore consider CPU isolation (isolcpus) to
allocate fully pre-allocate the resource.

 Better to run RT processes with non-RT on the same cores.

21

CPU affinity and CPU isolation

CC-BY SUSE 2022

 By default Linux handles IRQs on a specific core – CPU 0.

 Consider balancing IRQ handlers between the cores.

 Pinning and isolation of CPU is also possible in case of IRQ.

 The irqbalance tool monitors and distributes the irq affinty to spread the load across CPUs.

22

IRQ affinity

CC-BY SUSE 2022 24

Schedulling classes

Non-RT classes
 SCHED_OTHER – default class, time sharing algoritm.
 SCHED_BATCH – similar to SCHED_OTHER, designed

for CPU-intensive loads that affect the wakeup time.

 SCHED_IDLE - low priority class, tasks run only when
there is nothing to do.

RT classes

RT tasks can be assigned a priority between 0 and 98 (by
chrt command). Priority 99 is reserved for housekeeping
tasks.

A scheduling algoritm matters only for tasks with equal
priorities.
 SCHED_FIFO – first in, first out algoritm.
 SCHED_RR - similar to SCHED_FIFO but with a time-

sharing round-robin.
 SCHED_DEADLINE - for tasks doing recurrent jobs,

extra attributes are attached to a task
 A computation time, which represents the time the

tasks needs to complete a job
 A deadline, which is the maximum allowable time to

compute the job
 A period, during which only one job can occur.

CC-BY SUSE 2022

 Kernel space:

 Avoid using raw_spinlock_t.

 Avoid forcing non-threaded interrupts if possible

 User space:

 Proper initialization is crucial and it doesn’t have to be RT.

 During initialization make sure that you:

 Pre-allocate, lock and pre-fault memory

 Create and configure threads

 Configure the scheduling parameters

 Configure the CPU affinity and isolation

 Hardware:

• NMIs and low level firmware

• Hyperthreading

25

Caveats for real-time code

• Idle states & CPU frequency scaling

• NUMA

CC-BY SUSE 2022

https://bootlin.com/training/preempt-rt/

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests

https://docs.kernel.org/trace/hwlat_detector.html

https://github.com/fenrus75/powertop

https://www.kernel.org/doc/Documentation/trace/ftrace.txt

26

Resources & tools

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://docs.kernel.org/trace/hwlat_detector.html
https://github.com/fenrus75/powertop
https://www.kernel.org/doc/Documentation/trace/ftrace.txt

Copyright © SUSE 2022

© 2022 SUSE LLC. All Rights Reserved. SUSE and
the SUSE logo are registered trademarks of SUSE
LLC in the United States and other countries. All
third-party trademarks are the property of their
respective owners.

For more information, contact SUSE at:

+1 800 796 3700 (U.S./Canada)

Frankenstrasse 146

90461 Nürnberg

www.suse.comThank you

	Slide 1
	SUSE – COMPANY SNAPSHOT
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27

