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SUSE – COMPANY SNAPSHOT

SUSE solutions are powering thousands of enterprise customers’ mission-
critical workloads, including electronic banking systems and enterprise 
applications, autonomous vehicles, satellite operation centers, and life-
saving medical devices.

PARTNERSHIPSFAST FACTS

INDUSTRY INITIATIVES & 
ASSOCIATIONS

• 13 out of 15 largest FinServ firms
• 14 out of 15 largest aerospace firms
• 10 out of 10 largest automotive firms
• 13 out of 15 largest pharma firms 
• 5 out of 5 largest technology firms

• 19% YoY growth for SUSE
• 88% YoY growth for SUSE Rancher
• 50% ACV growth in cloud
• Member of CNCF board and TOC
• An independent leader in open source – 

SUSE SA (FRA)

Acquired Rancher in 2020
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The CORRECT way 
to use an escalator
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Optimizing for throughput or latency

Throughput - the tasks performed by a computer over a 

period of time

Latency  - the delay between cause and effect, reaction time
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A real-time system is actually slower (lower 

throughput) than a non-RT one!

 Context switching takes time

 Bigger chance of CPU cache misses 

 Real-time systems require some ‘slack’

 But it puts an upper bound on latency and minimizes 

jitter.
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Real-time operating systems

A system is said to be real-time if the total correctness of an operation depends not only 
upon its logical correctness, but also upon the time in which it is performed – Wikipedia

Linux Linux + PREMPT_RT
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Real-time systems – soft & hard

Hard real-time systems:

missing a deadline is a total 
system failure

 Car ECUs, pacemakers, industrial robot 
control, avionics

 Examples: no OS (bare metal), QNX, 
classic AUTOSAR, FreeRTOS, Integrity, 
Zephyr, etc. 

Soft real-time systems:

missing a deadline degrades the 
quality of service, but doesn’t lead to 
critical failure

 Audio/video transmission, computer games
 Examples: RT Linux, Windows 10 IoT, etc.
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Linux OS Basic 
Concepts
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Kernel vs Userspace

Kernel
 CPU is in priviledged mode.
 Provides abstraction for security, 

hardware, and internal data structures.
 A kernel process has direct and 

unrestricted access to system 
resources.

 All processes share a single virtual 
address space.

 A kernel process can access any 
memory block.

Userspace
 CPU is in unpriviledged mode.
 Userspace processes communicate 

with the Kernel via API called system 
call.

 All processes get separate virtual 
address space.

 A user process can access memory 
allocated to it, otherwise sigmentation 
fault. 

Userspace isolates ‘user’ processes from the core sub-systems of the operating system.
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An interrupt is a sort of signal that the hardware can send when it 
requires CPU time. Linux has to deal with two types of interrupts: 
hardware interrupts and software interrupts.

— Normally, handled in two parts: top half and bottom half.

— Top half executes critical code as soon as the hardware interrupt 
is received. 

— Bottom half is scheduled by software interrupt and does the most 
expensive calculations. 

12

Interrupts
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Preemption is a property of a multi-tasking operating system, in which 
the CPU can be interrupted in the middle of executing code and 
assigned other tasks. It is a way of implementing multitasking. 

— The decision to preempt a task is taken by the scheduler. 

— Critical for an RTOS to be able to ensure a higher priority task 
overtakes a lower priority task.

— For RTOS any task should be preemptible, both in userspace and 
kernel.
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The concept of preemption
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The Linux kernel implements several preemption models. The desired model is selected at build time of the 

kernel. 

 No Forced Preemption (CONFIG_PREEMPT_NONE) (server): The traditional Linux preemption model, geared 

towards throughput. System call returns and interrupts are the only preemption points in the kernel. 

 Voluntary Kernel Preemption (CONFIG_PREEMPT_VOLUNTARY) (Desktop): This option reduces the latency of 

the kernel by adding more “explicit preemption points” to the kernel code [. . . ] at the cost of slightly lower 

throughput. In addition to explicit preemption points, system call returns and interrupt returns are implicit 

preemption points.
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Preemption models in non-RT Linux
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Kernel Locks

Spinning Lock
 Spinlocks will busy-wait until the lock is freed.
 Spinlocks will disable preemption when taken.
 The spinlocks are most easily added to places that are 

completely independent of other code (for example, 
internal driver data structures that nobody else ever 
touches).

 Types of spinning locks: 
 spinlock_t
 rwlock_t
 raw_spinlock_t

Sleeping Locks
 Sleeping locks will sleep and schedule while 

waiting.
 Types of sleeping locks :

 Mutex
 rt_mutex
 Semaphore
 rw_semaphore

Locks are synchronisation primitives that arbitrate concurrent accesses to a resource.

15



PREEMPT_RT patchset
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But why?

 First made available for Linux v2.6.11

 Slowly being merged into mainline

 One major hurdle remains - printk

17

The PREEMPT_RT patchset

graphic by Bootlin
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● Fully Preemptible Kernel  (CONFIG_PREEMPT_RT) (RT): All kernel code is preemptible except for a few selected 

critical sections. Additionally, large preemption disabled sections are substituted by separate locking 

constructs. This preemption model has to be selected in order to obtain real-time behavior.

● With PREEMPT_RT, spinlock_t and rwlock_t will become sleeping locks

● Almost all interrupt handlers are threaded

18

What does PREEMPT_RT bring to the Linux kernel?



Configuring the 
realtime system
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Linux provides means to ‘pin’ a given process to CPU – the CPU affinity mechanism. You can also set 
constraints on CPU cores that allow you to allocate cores for your tasks. 

Practical tips:

 Make sure that a process won’t be migrated to another core.

 Dedicate cores for specific tasks.

 Optimize the data-path if a process deals with data handled by a specific CPU core.

 Ease the job of the scheduler’s CPU load-balancer, whose complexity grows non-linearly with the number of CPUs.

 Kernel can also schedule other processes on the CPU cores you have chosen, therefore consider CPU isolation (isolcpus) to 
allocate fully pre-allocate the resource.

 Better to run RT processes with non-RT on the same cores.  

21

CPU affinity and CPU isolation
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 By default Linux handles IRQs on a specific core – CPU 0.

 Consider balancing IRQ handlers between the cores.

 Pinning and isolation of CPU is also possible in case of IRQ. 

 The irqbalance tool monitors and distributes the irq affinty to spread the load across CPUs.

22

IRQ affinity
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Schedulling classes

Non-RT classes
 SCHED_OTHER – default class, time sharing algoritm.
 SCHED_BATCH – similar to SCHED_OTHER, designed 

for CPU-intensive loads that affect the wakeup time.

 SCHED_IDLE - low priority class, tasks run only when 
there is nothing to do. 

RT classes

RT tasks can be assigned a priority between 0 and 98 (by 
chrt command). Priority 99 is reserved for housekeeping 
tasks. 

A scheduling algoritm matters only for tasks with equal 
priorities. 
 SCHED_FIFO – first in, first out algoritm.
 SCHED_RR  - similar to SCHED_FIFO but with a time-

sharing round-robin.
 SCHED_DEADLINE - for tasks doing recurrent jobs, 

extra attributes are attached to a task 
 A computation time, which represents the time the 

tasks needs to complete a job
 A deadline, which is the maximum allowable time to 

compute the job
 A period, during which only one job can occur.
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 Kernel space:

 Avoid using raw_spinlock_t.

 Avoid forcing non-threaded interrupts if possible

 User space:

 Proper initialization is crucial and it doesn’t have to be RT. 

 During initialization make sure that you:

 Pre-allocate, lock and pre-fault memory

 Create and configure threads

 Configure the scheduling parameters

 Configure the CPU affinity and isolation

 Hardware:

• NMIs and low level firmware

• Hyperthreading

25

Caveats for real-time code

• Idle states & CPU frequency scaling

• NUMA
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https://bootlin.com/training/preempt-rt/

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests

https://docs.kernel.org/trace/hwlat_detector.html

https://github.com/fenrus75/powertop

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
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Resources & tools

https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://docs.kernel.org/trace/hwlat_detector.html
https://github.com/fenrus75/powertop
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
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