
PostgreSQL Streaming Replication
for Medium-sized Databases

(10-20 TB)
Challenges and Solutions

Ivan Ivanov

The Case

On the go Size

 • Everything is easy as a
tutorial when the size of
the data is small

 • Problems and
challenges occur when
the size increases
significantly

Network

 • Running database
replication in a local
network is not as
complex as running
database replication
through VPN networks
or over the internet in
different countries and
cloud datacenters

 • Planning* and
running replication from
the beginning is a must
for a new project

 • But what if you need
to add replication to
already existing cluster
with size 10-20 TB?

On the go

* See Botros, S., Tinley, J. High Performance MySQL, 4th Edition, 2021.

Challenges deep-dive

On the go

• Running
pg_basebackup with the
default option
--wal-method=stream

• How to copy all
necessary WAL files
during the backup?

Size

• 10-20 TB database is
a normal size for a
medium-sized system

• How size can affect
setting up and running
PostgreSQL replication?

Network

• Copying 10-20 TB of
data through the
internet can be slow

• How to speed up the
process of copying data
files and WAL files?

The problem: example

• command: pg_basebackup --progress --verbose --wal-method=stream -c
fast -D /var/lib/postgresql/11/main/ -U replicant -h 5.5.5.5

• the option --wal-method has several settings, but all of them are not sufficient

• the best option to use is --wal-method=none (instead of fetch or stream)

The problem: explanation

• pg_basebackup: copying data files without compression (data files are copied 1:1)

• the data copy can take several days to complete for a 10 TB database and a 100
Mbps internet connection from a local datacenter to external cloud, e.g. Amazon
(this is going to take around 9 days)

• pg_basebackup: streaming all necessary WAL files through the copy of data files,
but stops streaming them when the data copy finish

• PostgreSQL replication cannot start at the end of the process, because WAL
files cannot catch-up due to the large size of the database and the speed of the
network or have been already deleted on the primary host

Solutions

Copy all WAL files using independent
archiving (and not from pg_basebackup)

• set up independent PostgreSQL archiving the standard way

archive_mode = on
archive_command = 'test ! -f /pg/archive/%f && cp -p %p
/pg/archive/%f'
archive_command = 'ssh postgres@5.5.5.5 "test ! -f
/var/lib/postgresql/archive/%f" && scp -p %p postgres@5.5.5.5:/var/li
b/postgresql/archive/%f'

• set up a custom service to sync WAL files from local server to replication server

while true ; do /usr/bin/rsync -avr --remove-source-files
--ignore-existing /pg/archive/
postgres@5.5.5.5:/var/lib/postgresql/archive/ ; sleep 0.5 ; done

Copy all WAL files using independent
archiving (and not from pg_basebackup)

• now use --wal-method=none to copy only the data files (without any WAL files)

pg_basebackup --progress --verbose --wal-method=none -c fast -D
/var/lib/postgresql/11/main/ -U replicant -h 5.5.5.5

• now pg_basebackup will only copy the needed data files, but providing all
necessary WAL files is given to the independent archiving, which will continue
sending WAL files after the completion of the base backup

• use the tar format and the --gzip option

Use pgBackRest for parallel and
compressed backups

• the best alternative to pg_basebackup is pgBackRest, which has the following
features that pg_basebackup does not have:

⇨ parallel backup processing

⇨ compression

• this means that you can dump the base backup faster because of the parallel
processing and take advantage with the compression on the fly

• more information about pgBackRest is found here: https://pgbackrest.org/

Use pgBackRest for parallel and
compressed backups

• pgBackRest is similar to Barman
• available as a Debian package and RHEL or CentOS package
• uses configuration files known as stanza
• example configuration:

[demo]
pg1-host=pg-primary
pg1-path=/var/lib/postgresql/12/demo
[global]
compress-level=3
process-max=3

Network connection tips

• if your case includes setting up database replication between a primary local

PostgreSQL server, e.g. in Bulgaria, and a secondary PostgreSQL replica server in

the cloud, .e.g. in Germany (Amazon Web Services) I recommend copying data files

and WAL files directly through the internet with TLS enabled connection

• using VPN networks can slow down the connection even further and for setting

up the replication you can use TLS internet connection and then for running the

replication you can switch to VPN access

Hardware resources tips

• if you are setting up PostgreSQL secondary replica server in the cloud, you have
the luxury to choose not only the CPU and RAM resources, but also to select
different disks with different speeds and IOPS parameters

• for setting up the replication (copying the data files and applying WAL files for the
first time) choose a virtual machine with more vCPUs and RAM (and increase
shared_buffers and wal_buffers)*

• for setting up the replication choose faster disks in order to be sure that this will
not be a bottleneck when applying WAL files starts (then you can revert back to
slower disks again)

* See https://www.enterprisedb.com/blog/tuning-sharedbuffers-and-walbuffers

The bottleneck: WAL files catching-up

• after completion of copying the data files with a pg_basebackup from the primary
to secondary server, you can find yourself in a situation where your 10 TB database
was copied through the internet for 9 days and now PostgreSQL must replay all
500 000 WAL files which have been copied for these 9 days

• 500 000 WAL files are around 8 TB, which is almost the same as the size of your
PostgreSQL cluster

• WAL files are applied only by one recovery PostgreSQL process: it must copy
the WAL file from the archive (write operation), read it (read operation) and apply it
to the database (write operation)

Optimize the applying of WAL files

Read WAL files

• Use pg_prefaulter
(https://github.com/TritonD
ataCenter/pg_prefaulter)

• It can read-ahead WAL
files in order to prewarm
them in the filesystem
cache for faster reading

• Some people use tar to
achieve the same result

Apply WAL files

• Can not be skipped

• Optimize the application
to decrease filling of WAL
files on the master

• Use all other tips in order
to have a fewer count of
WAL files to apply

Copy from archive

• You can put all WAL
files from the master
directly in the pg_wal
directory of the
secondary server, but
this is highly not
recommended, because
can easily interrupt the
replication process

Running the replication

• monitor system load, CPU and RAM usage and decrease or set hardware
resources and configuration settings properly for the replica server

• monitor PostgreSQL replication status and lag through views
pg_stat_replication and pg_stat_wal_receiver

• either use archive_command, or pg_receivewal with replication slots to
preserve the replication when the network drops or there is a significant
lag

Questions?

Thank you!

Ivan Ivanov

